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Difference Equations in Statistical Mechanics. 
II. Solid-on-Solid Models in Two Dimensions 
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A review and some new results are presented for the solid-on-solid models of 
wetting in two dimensions (i.e., line interfaces) with an emphasis on the 
difference equations arising in the transfer matrix calculations for these 
models. Methods for solving the appropriate difference equations exactly or 
approximately are surveyed, including specific results for short-range, long- 
range power-law, and applied field-like (binding) external potentials. 

KEY WORDS: Wetting transitions; generating functions; continued fractions. 

1. I N T R O D U C T I O N  

Solid-on-solid (SOS) models have been extensively used to describe the 
properties of interfaces separating coexisting thermodynamic phases. For 
reviews consult, e.g., refs. 1 and 2. In two dimensions, numerous SOS 
model studies of the wetting transition and associated surface and inter- 
facial phenomena have been reported in recent years. ~176 The purpose of 
this review is to survey recent developments in the studies of the difference 
equations associated with the 2d SOS models, as well as report some 
new results. In an accompanying article, ~21) we review difference equations 
arising in the studies of the 2d cluster statistics models. 

In Section 2, we introduce the standard restricted SOS model ~6'17) and 
describe its solution in the case of no external potential. The physical 
picture of the wetting transition via interface depinning is detailed and the 
critical-point aspects of the transition are reviewed. Various external poten- 
tials of interest in wetting studies are described in Section 3. With external 
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potentials, the SOS models are no longer exactly solvable in general. Dif- 
ferent methods of approaching the problem are introduced in Sections 3-5. 
Specifically, in Section 3 we outline the generating function method (see 
ref. 21 for a more detailed review). Differential equation approximation is 
considered in Section 4. Finally, Section 5 describes the continued fraction 
techniques. 

Only a limited number of SOS models with external potentials can be 
solved in closed form. An example of a short-range potential is presented in 
Section 6. Section 7 is devoted to the 1/r long-range potential case. ~18) Some 
open problems are summarized in Section 8. 

2. RESTRICTED SOlID-ON-SOLID M O D E l  

In this section we introduce the restricted SOS model. (6'17) Consider a 
planar square lattice of Ising spins, + 1, at positions (x, y) with integer 
0 <~ x < Go, ]y] < 0% i.e., a semi-infinite half-plane geometry. The boundary 
spins are fixed at - 1 for x = 0 and + 1 for x = 0% thus forcing an interface 
in the system. One can argue generally r that there will exist a long con- 
tour separating the region of predominantly ( - )  magnetization near the 
wall at x = 0 from the region of ( + ) magnetization for large x. The shape 
of the long contour can, in principle, be quite complicated. It is, however, 
generally accepted ~1'22) that for studying wetting phenomena it is sufficient 
to account for the SOS subset of Ising configurations with a single long 
contour, with no overhangs or bubbles. Thus, we consider spin con- 
figurations with ny t> 1 leftmost spins (at x = 0, ,1,..., ny - 1 ) in each fixed-y 
row taking values - 1 ,  while the remaining spins (at x=ny,  ny+ 1,...) 
taking values +1. (Here y = 0 ,  _+1, +_2,... labels the lattice rows.) The 
interfacial energy is modeled by the Hamiltonian 

H/kT= ~ [U Iny - r l y _ l  I - W(~lny + E(r/y)] (2.1) 
Y 

Here U > 0  represents the surface tension contribution. Contact inter- 
actions attracting the interface to the wall at x = 0 are represented by the 
W >  0 term. The external potential is denoted by E(n). 

In (2.1), the difference Iny-ny 1[ can take on any value. However, it 
is mathematically convenient and physically acceptable to further restrict 
the model to configurations with [ny-ny_l] = 0  or 1 for all y. Detailed 
studies indicate ~23) that such a restricted SOS model is identical with the 
unrestricted model in all the qualitative features of the wetting behavior. 
Let us introduce the notation 

0 < u = e - U <  1, w=e w sr 1 (2.2) 
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where we assume W > E ( 1 ) ,  to avoid unilluminating mathematical  com- 
plications. [-As explained in Section 3, the physically interesting potentials 
are usually considered in the regime W>> IE(1)].] Also, denote by n and m 
the ny values in two consecutive rows. Then the transfer matrix T can be 
defined to have elements 

T,m = u I" mlw6"ne--E~'~(60 . . . .  + 61, In-ml) (2.3) 

Note that we chose a nonsymmetric transfer matrix. Let gm denote the 
right-eigenvector elements. Then the eigenvalue equations 

reduce to 

T,m gm = 2g, (2.4) 
m = l  

g n + u ( g ,  l + gn+l)=) .g ,e  E('], n > l  (2.5) 

which is a second-order difference equation, with the boundary condition 

w(gl + ug2) = 2gl (2.6) 

In order to illustrate the mechanism of the wetting transition, we will now 
solve (2.5~(2.6) with no external potential, i.e., E(n)=-0. (6) It is convenient 
to introduce two new variables t and e defined by 

1 1 w w - 1  
- - - t  with u C -  (2.7) 

u uc w - 1  2 - w  

2 = 1 + 2u + 2u~ (2.8) 

The general solution of (2.5) with E ( n ) - 0  is 

g, = AT" + B 7 " for e r  (2.9) 

g , = A T " + B n  7" for e = 0 , - 2  (2.10) 

where 

7 = 1 + e -  i-e(2 + e)] 1/2 (2.11) 

For e > 0, we have 7 < 1. On physical grounds we discard the exponentially 
growing term in (2.9), i.e., B = 0 .  The eigenvector g ,  oc 7" is then 
dominated by the "nonwet" spin configurations, with the layer of ( - ) spins 
extending the distance 

~• = ( - l n  7) 1 (2.12) 
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from the wall. However, the boundary condition (2.6) "quantizes" the 
nonwet part of the spectrum, yielding at most one eigenvalue. One can 
show (see refs. 6 and 17, and the next section) that this nonwet solution 
exists only for u < uc(w), corresponding to t < 0 in (2.7). 

The eigenveetors corresponding to - 2  ~< e ~< 0 are dominated by the 
"wet" configurations with an unbounded ( - )  layer. (The range e < - 2  is 
of no physical interest.) Excluding the end points e = 0, - 2 ,  which require 
special consideration, and which we omit here except to quote that 
B ( e = 0 ) = 0 ,  gn(e=O)=-A, we note that ~ and ~ - 1 _ ~ .  become complex 
(and conjugate) for - 2  < e < 0, with I~l = 1. The boundary condition then 
determines the ratio A/B; the "wet" spectrum is not quantized. It exists for 
all t, covering the 2 range 1 - 2u ~< 2 ~< 1 + 2u. 

The interfacial free energy f and the longitudinal correlation length ~ll 
of the system are given, as usual in transfer matrix calculations, in terms of 
the largest and second eigenvalues 2o and 21, with the corresponding eo, l 
values, by 

f =  - I n  2 o, ~ 1  = 1n(20/21 ) (2.13) 

One should also use 20 in (2.12) to obtain a definition of the transverse 
correlation length. For t < 0 [u < uc(w)], which corresponds to the nonwet 
regime, explicit calculation yields (6'23) 

w 4u  2 1/2 

while 21 - 1 + 2u. For small negative t, we find, by expanding (2.14), 

~o ~ �89 t2 (2.15) 

Relations (2.7)-(2.8) can be used to obtain the following rather general 
small-t and eo expansion for f i n  (2.13), valid to O(t 2) and O(eo): 

f = l n  2 - w  . . . . . .  2 ( w - 1 ) t  2 ( w - 1 ) t 2  2 ( w - 1 ) e 0 +  (2.16) 
w 2 - w (2 - w) 2 w 

Note that this expansion does not depend on the particular form of 
Co(t; w), e.g., (2.15). The singular part of the interracial free energy is thus 
proportional to -Co and is given by 

w - - 1  
fsing- - -  t 2 (2.17) 

w 

for small, negative t. (Note that the "regular part" o f f  has no physical 
significance unless one takes special care to relate the SOS parameters to 
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the original Ising model formulation. (22)) For the correlation lengths, we 
use (2.12)-(2.13) to get 

W 
~ll ~ - ~  t-2, ~• ~ ]t[ 1 (2.18) 

As t ~ 0 - ,  there is a wetting critical point corresponding to the depinning 
of the interface from the wall. For positive t, 2o --- 1 + 2u, with constant g~, 
and the spectrum is continuous. Thus, formally we obtain 

fsing = O, ~11 = ~ ,  r177 = ~ (2.19) 

in the wet regime. 

3. E X T E R N A L  P O T E N T I A L S .  
G E N E R A T I N G  F U N C T I O N  T E C H N I Q U E  

The nature of the wetting transition in the SOS model depends ~12) on 
the form of the external potential E(n). The following choices of E(n) are of 
particular interest. 

Exponential short-range potentials, behaving for large n according to 

E(n),~ce -~', a > 0  (n>> 1) (3.1) 

Such exponential potentials are generated in the process of 
renormalization ~24'z5~ of the wetting models with short-range forces. 
Analytic results for this case will be reported in- Section 6. 

Power-law long-range potentials, behaving for large n according to 

E(n)~cn -~, ~b>0 (n~>l) (3.2) 

Such potentials are of practical importance in 3d wetting,~26) and have been 
extensively studied for the 2d case~12'14'15'18"lg); see Sections 4 and 7. 

Applied field-like binding potentials, 

E(n)=cn ~, c > 0 ,  ~k>0 (3.3) 

Potentials of this form always suppress the wetting transition (bind the 
interface). However, one can study the c -~0  + scaling behavior. ~2'12) The 
choice ~ = 1, corresponding to the applied magnetic field, is of special 
interest and has been considered by many authors ~z'3'8'9'12) within the 
differential equation approximation. However, no exact results are known 
for the difference equation in this case. 

In actual calculations, it is convenient to "deexponentiate" the poten- 
tial. For the long-range potentials of the type (3.2), one argues that the 

822/51/5-6-25 



1116 Privman and ~vraki6 

nature of the wetting transition depends mostly on the long-range tail, 
while the short range features of the potential represent a perturbation of 
the contact W interaction in (2.1), provided ]E(n)l ~ W for n = O(1). Thus, 
one can choose a power-law potential 

E (n )=ln ( l+cn  ~), ~b>0, csmall  (3.4) 

which satisfies (3.2). This form has been employed in ref. 12: see Section 4. 
In Section 7 we discuss an alternative choice of a power-law potential, 

E ( n ) -  in l + n ( n + l ) . . . ( n + ~ _ l )  

for integer ~ = 1, 2 .... (and small c). 
A similar line of reasoning for the exponential potentials (3.1), is 

somewhat ambiguous, since they are short-range all along. However, for 
mathematical convenience, we will use in Section 6 the choice of the 
exponential potential 

E(n) - ln ( l+ce-an) ,  a > 0  (3.6) 

which allows derivation of analytic results and a detailed analysis for 
small c. 

"Deexponentiation" of the binding potentials (3.3), i.e., using modified 
binding potentials 

E(n)=ln(l+cn~),  ~ > 0 ,  c > 0  (3.7) 

obviously changes the large-n asymptotic form. However, it has been 
argued (3,~z) that the small-c scaling behavior is not affected. Note that for 
the "magnetic field" case ~9 = 1, the difference equation (2.5) with (3.7) is 
the recurrence relation for the Bessel functions. Thus, exact results can 
probably be obtained in the ~ = 1 case. We are not aware of such a study, 
and it is outside the scope of our review to explore this possibility here. 

The generating function method for solving difference equations is well 
known, (27) and is reviewed in an accompanying paper. (21) Here we 
emphasize features specific for the SOS model applications. The generating 
function is defined by 

G(2) = ~ gn zn I = gl + g2 z + g3 z2 + "'" 
n = l  

(3.8) 

Equation (2.5) is then multiplied by z n and summed over n = 2, 3,.... In 
some cases, one ends up with a closed form equation for G(z). Specifically, 
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for potentials of the type (3.4), (3.5), and (3.7), with integer 0 and 0 one 
obtains differential equations for G(z), some of which will be further 
discussed in Section 7. 

For the potentials (3.6) and (3.3) with ~ = 1, functional equations for 
G(z) of the type considered in ref. 21 are obtained. We derived formal 
expressions for the generating functions in both cases (not given here). 
However, we were not able to analyze the eigenvalue spectrum. [The 
potential (3.6) is treated in Section 6 by a different method.] 

In order to illustrate the generating function approach, including the 
quantization of the "nonwet" eigenvalues imposed by the boundary con- 
dition (2.6), we turn again to the simple solvable case, E(n)=-O. Here and 
below we will be mostly interested in the nonwet regime of finite f~ing, ~ll' 
and ~-i [while (2.18) is typical for the wet phase]. The appropriate 
equation for G(z) is algebraic, 

[u(l+z2)+(1-A)z]G(z)=[u+(1-2)z]g~+uzg2 (3.9) 

By using (2.8) and (2.1l), we can represent this as 

1 - z(2 + 2e -- g2/gl ) 
a(z):gl  ( z -y ) ( z -7 - ' )  (3.10) 

The nonwet solution corresponds to g,  ~ 0 for large n. Since g, are the 
Taylor coefficients of G(z), we conclude that two conditions must be 
satisfied. First, e > 0 is needed to have real 7 < 1. Second, the singularity at 
z = 7 yielding exponentially divergent gn must be canceled. However, the 
ratio g2/gl can be replaced by 

g2 wil + t ) + 2 e  
- - =  (3.11) 
g l  w 

as implied by the boundary condition (2.6), with (2.7)-(2.8). Canceling the 
pole at 7 therefore yields the relation between e and t that determines the 
"quantized" eigenvalue eo(t;w), see (2.14)-(2.15). Note that since the 
original difference equations (2.5) and (2.6) are linear, G(z) has an 
arbitrary coefficient gl in (3.10). 

4. D I F F E R E N T I A L  E Q U A T I O N  A P P R O X I M A T I O N  

Let us introduce the notation 

I w--1  ] 
E(n)-=ln 1 + V(n) (4.1) 

w 
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which effectively defines V(n) for n = 1, 2, 3 ..... After some algebra Eq. (2.5) 
[with (2.7), (2.8), (4.1)] can be expressed as 

2(w - 1) 1 - ( g n + l - 2 g , + g , _ ~ ) +  l h - - e - t  V(n) 
w 

= ( - 2 e )  g, ,  n > l  

gn 

(4.2) 

A standard procedure for the critical region near the wetting transition (or 
rounded transition in the case of binding potentials), i.e., for small t and e, 
is to approximate (4.2) by the differential equation 

02g(X) 
8X 2 t- V(X) g(X)= ( -2g )  g(X) (4.3) 

where 0 ~< X < oo is a continuous counterpart of n. Indeed, the fluctuations 
become large near the transition, and the magnetization profile varies over 
large distances (comparable to {_L). Thus, the discreteness of the original 
problem will be "washed out." [The small O(t, e) terms have been discar- 
ded in the coefficient of the potential.] 

The boundary condition (3.11) is written as 

g 2 - - g x  2 
- -  = t + - -  ~ ( 4 . 4 )  

g l  w 

and is replaced by 

g'(0) 
- - =  t (4.5) 
g(O) 

Neglecting the ~ term is justified since for sharp, continuous wetting trans- 
itions e ~  It] 2-~ with e <  1. For first-order wetting transitions ( e =  1) and 
for binding potentials, more care may be required. In summary, (4.3) is a 
quantum mechanical Schr6dinger equation with potential V(X) and with 
the boundary condition that corresponds to a pointlike attracting (for 
t <  0) delta-function potential at the origin, 2tO(X). The V(X)=0 wetting 
transition corresponds to the disappearance of the bound state as t ~ 0- .  
[To make this interpretation precise, one should restrict consideration to 
even wave functions and extend the problem to - o o  < X <  oo sym- 
metrically, i.e., with V(fXI)]. 

A more ad hoc approach (~2) is to define the 2d SOS model by the 
quantum mechanical (QM) Hamiltonian with a potential consisting of a 
hard wall at X =  0, followed by a potential well at, say, 0 < X <  b, and 
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parameters adjusted to have one loosely bound state. Long-range poten- 
tials of the form (3.4), (3.6) are then introduced, i.e., 

V(X) = C X  -~, q~ > 0 (4.6) 
o r  

V ( X ) = C X  ~ 0 > 0 ,  c > 0  (4.7) 

with C = c w / ( w - 1 ) .  Another approach (2) leading to somewhat different 
QM calculations consists of defining the SOS model with continuous inter- 
face height variables. 

It should be emphasized that both the discrete and continuous SOS 
models in all their varieties supposedly approximate the original Ising 
problem to the extent of describing the wetting transition singularities. 
Thus, there is no a priori classification by the degree of approximation. We 
believe, however, that in the case of the first-order transitions t15'15'19) and 
for the description of interracial pinning by the binding potentials deep in 
the wet regime (t > 0) the discrete models are more appropriate and the 
physical interpretation of their parameters is more transparent. 

Although we do not intend to review in detail all the QM results 
available in the literature,/as'12 15,19) let us mention some conclusions of 
general interest. Consider first the power-law potentials (4.6). For  ~ > 2, 
the mechanism of the wetting transition by the disappearance of the bound 
state into the continuum is not changed. ~12) Nonanalytic corrections to 
scaling are present, e.g., in (2.15); however, the leading order dependence 

fsing ~ - t 2  remains unchanged (with a modified t). For 0 < ~b < 2 and c < 0, 
the wetting transition is suppressed: the potential is strong enough to pin 
the interface to the wall. In the spectral language, there are always bound 
states in addition to the continuous spectrum. For t > 0 ,  one finds 112) 

fsing ~ IC[ 2 / (2-d)  for small ]cl, up to possible logarithmic corrections (18) for 
t-~ 0. Limited results for c >  0 have been outlined in ref. 15. Recently, a 
detailed study (18) of the ~b= 1 case has been reported for the discrete 
difference equation; see Section 7. It transpires that the wetting transition is 
first order for c > 0 ,  with some unusual properties, e.g., divergent 
correlation lengths (at least for ~b = 1). 

For the binding potentials (4.7), the spectrum is always discrete. Thes 
no wetting transition. For t > 0, one has~12'14~fsing ~ c 2/~2 +~). The important 
case of the applied magnetic field, ~, = 1, has also been considered in ref. 2. 
Their formulation does not involve the "deexponentiation" of the potential; 
see (4.1). Detailed results, including the c, t ~ 0 crossover scaling forms for 
various quantities, are available in some cases. ~2's'12-15~ 

Finally, the borderline case ~b = 2 in (4.6) has been studied in detail 
recently. (~9) A rich phase diagram with nonuniversal critical, multicritical, 
and first-order transitions has been discovered. 
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5. C O N T I N U E D  F R A C T I O N  M E T H O D  

A linear second-order difference equation can be solved formally (28'29) 
in terms of continued fractions. Thus, we introduce the ratios 

Rn-gn+~/gn (n>~l) (5.1) 

so that RI is given by the right-hand side of (3.11). The difference equation 
(4.2) is then divided by g, and after some rearrangement of terms is 
expressed as 

1 
Rn-~=2(1 + e ) +  {1 + [ 2 ( w -  1)/w]e-t} V(n)-Rn' n>~2 (5.2) 

This can be iterated to generate a continued fraction expansion for Rk 
(k>~ 1). Specifically, for R~ we obtain [see (3.11)] 

2 
l + t + - - e  (5.3) 

W 

2(1 +~)+ ~'(2)- 
2(1 + e ) +  P(3) -  

1 
1 

1 

I 
2(1 + e ) +  P(4) -  

2(1 + ~ ) +  P(5) . . . .  

where 

I 2(w-l) J 
V(n)--- l + - - e - - t  V(n) (5.4) 

W 

Equation (5.3) is a formal implicit equation for e(t). 
In connection with (5.3), we must consider the convergence of the 

continued fraction, implications of the general mathematical theory of 
continued fractions (3~ for our problem, and the possibility of deriving 
specific results by utilizing (5.3). Generally, the second-order difference 
equation (4.2) has two linearly independent solutions, say g(1) and g(2). 
There is some arbitrariness in selecting the two solutions. However, if one 
can select them in such a way that 

l im (1) (2) [gn /gn ] =0  (5.5) 
n ~ -boo  

then g(1) is termed the minimal solution./28'29) The existence of the minimal 
solution is not granted. Indeed, our calculations in Section 2 for the case 
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E(n)=-O corresponding to V(n)=O indicate that the minimal solution 
exists for ~> 0, in which case it is the physical "nonwet" solution Ay n. 
However, none of the two solutions for - 2 < e < 0  is minimal. (On the 
borderline, e = 0, the physical solution g,  = A is minimal.) The differential 
equation approximation (Section 4) suggests that the nonwet solution being 
the minimal solution is a general rule. Indeed, it corresponds to the quan- 
tized localized ground-state eigenfunction in QM calculations, which 
decays at least exponentially as X--, oo. On the other hand, the eigen- 
functions of the continuous spectrum are linear combinations of two 
running waves, none of which is "minimal" as X-* oo. (The properties of 
the borderline "zero-energy" solutions depend on the potential, specifically 
its long-range tail and sign.) 

An important theorem by Pincherle 132) relates the convergence of the 
continued fraction for RI (and Rk with k >  1) to the existence of the 
minimal solution. Indeed, the right-hand side of (5.3), and similar con- 
tinued fractions for k > 1, converge if  and only if  the difference equation 
possesses the minimal solution. Furthermore, the values of the continued 
fractions give Rk for the minimal solution, i.e., gn = g~l)in (5.1). Thus, (5.3) 
is a well-defined equation for the ranges of the parameters t, w, and those 
of V(n) for which the nonwet solution exists, and its free energy is given by 
the largest root co(t; w,...). 

The line of the argument can be reversed. The general mathematical 
theory (3~ of the convergence of continued fractions can be invoked to 
make some of the conclusions on the spectrum of the problem more 
rigorous. For example, for the binding potentials (3.3), (3.7) corresponding 
to V(n)~  oo for large n, the appropriate types of continued fractions 
converge for all /~.(30,31) Thus, t hebounda ry  conditions will quantize all 
"energies" e. However, for all other potentials introduced in Section 3, with 
V(n)--, O, one can prove that the continued fraction converges for e > 0  
[and sometimes for e = 0, depending on the details of V(n)], but it diverges 
for - 2 < e < 0. Thus, only the e > 0 part of the physically relevant spectrum 
is quantized and can represent nonwet solutions. 

The continued fraction in (5.3) is of the type called a J-fraction in the 
mathematical literature. (3~ Unfortunately, not much is known about the 
analytic form of such fractions for e---, 0 +. In the case of the potentials 
V(n) --* 0 (for large n), e = 0 is a special point, since, as already mentioned, 
the J-fraction converges only for e > 0 or e >~0. This can be seen in the 
simplest case of no external potential. Indeed, for V(n)=-0 the continued 
fraction is easily evaluated: for e/> 0, it converges to y(~) [see (2.11)], and 
(5.3) reduces to 

2 
1 + t + - e =  1 + e -  [~(2 + e)] ~/2 (5.6) 

w 
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Thus, the continued fraction, and t(e), have an ~e  x/2 singularity as e ~ 0 +. 
Note that (5.6) yields (2.14). Specifically, for small e, (5.6) is just 
t ~ - ( 2 e )  ~/2, which has one nonwet solution (2.15), for t < 0  only. 
Generally, the continued fraction equation (5.3) becomes an algebraic 
equation for e(t) if V(n) is of finite range, i.e., V(n > nm~x) = 0. 

6. E X P O N E N T I A L  E X T E R N A L  P O T E N T I A L  

I n  this section we consider the exponential potential 

V ( n ) = C e  -~n, a > 0  (6.1) 

In the notation of Eqs. (3.6), (3.1), and (4.1), C = c w / ( w -  1). The difference 
equation (4.2) reads 

g n + l - - 2 ( l + ~ ) g n + g n _ l  = 1-t - -  e t Ce ~ng, (6.2) 
w 7 

A discussion of difference equations of this type in ref. 21 (and references 
cited therein) leads to the following series for the minimal  solution (we keep 

> 0 here): 

g , = 7 "  ~, pine a,m (6.3) 
m = 0  

where the coefficients Pm satisfy the f irs t-order recursion 

[-7(e - ~ m -  1) + y - l ( e  a '~- 1)] Pm 

I 2 ( w -  1) ] = C  1-~ e - - t  Pm--~, m > 0  (6.4) 
W 

obtained bY substituting (6.3) in (6.2). With a convenient choice Po = 1, we 
get 

p m = C  '~ l + - - e - t  
W 

x f i  [7-1(e ak -  1) -- 7(1-- e-ak)] - 1  (6.5) 
k = l  

for m = 1, 2 ..... The boundary condition [see (3.11)] reduces to 

~  n e - 2 a m  2 ~ ~,~ = o r,~ 
1 + t + - -  e = ( 6 . 6 )  

w S~m=oPm e-~m 
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This implicit equation for e(t) is rather complicated for general C. 
However, the series on the right-hand side are power series in C, since 
p,,, = o ( c m ) .  Thus, for small C a systematic approximation scheme can be 
developed by accounting for corrections due to successively higher powers 
of C. The leading singularity (~e 1/2) of t(e) still comes from the coefficient 

on the right-hand side of (6.6); see (2.11). Thus, the nature of the wetting 
transition is not changed (at least, for small C). For example, (2.15) is 
replaced by 

s o ~ (1/2 + r)(t - to) 2 (6.7) 

where the shifted t variable can be calculated to a desired accuracy for 
small C. For example, to O(C) ,  

t ,  ~ - C e - a ( e  a - 1) -1 (6.8) 

r ,~ Ce a(ea + 1 )(e a - l ) 2 (6.9) 

7. P O W E R - L A W  EXTERNAL POTENTIALS.  
EXACT RESULTS FOR THE C]n POTENTIAL 

In this section we discuss the long-range potentials defined by (3.5) for 
mathematical convenience. Thus, we have 

C 
V(n) = (7.1) 

n ( n +  1 ) . - - ( n + ~ b -  ]) 

where ~b = 1, 2, 3,..., and 

r  
C -  (7.2) 

14 ,1 - -  1 

Multiplication of the difference equation (4.2) by Cz  n -  ~/V(n) and summing 
over n = 2, 3 .... yields after some algebra the following differential equation 
for the generating function [-see (3.8)]: 

O~ 1) 
az-- ~ [z  ~ -  l(z - ? ) ( z -  ~ G ( z ) ]  

= C I 1  + 2 ( w - 1 ) a  1 - t  [ G ( z ) - g ~ ] + ( ~ ! ) [ g 2 - ( 7 + ? - l ) g l ]  (7.3) 
W 

where 7(e) is defined by (2.1l). The solution of (7.3), with the additional 
condition (3.11), has been reported only for the case ~b= 1. ~18) There is 
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some hope to make analytical progress for ~b=2, since there is a 
mathematical literature on the appropriate homogeneous equation. ~33) 

The inhomogeneous term in (7.3) is a constant. Thus, additional z 
differentiation yields a homogeneous differential equation of order ~b + 1. 
Small-z analysis then indicates that out of its ~b + 1 linearly independent 
solutions, only two admit power-series expansion around z = 0 .  The 
conditions G(0) = gl and G'(0) = g2 then determine the coefficients of the 
linear combination of these two solutions. Thus, we end up with 

G(z) = g l f l ( Z ;  G t, w, c) + g2f2(z; 5, t, w, c) (7.4) 

For the wet regime, - 2  ~<5~0, the singularities of fk(z)  nearest to the 
origin will be on the unit circle, in fact, at z = 7  and ? - 1 _ 7 ,  (where 
lYl = 1). The ratio g2/gl is fixed by (4.4); however, there is no quantization 
of e. In the nonwet regime, 5 > 0, the additional condition of canceling, in 
G(z), the singularity of fk(z)  at z = 7 < 1 to let the singularity at z =7  -1 
dominate the convergence of the power series (3.8) will lead to the quan- 
tization of e, 

General expectations for ~b= 1, 2, 3 .... presented above have been 
checked ~ls) in detail by exact calculations for the simplest case ~b = 1. Con- 
sult ref. 18 for the explicit form of f~(,z). The resulting equation for 
Co(t; w, c) is rather complicated, and is not reproduced here. Scaling 
analysis for small t, 5, and c yields the following results. For  c < 0  
potentials, causing attraction of the interface to the substrate, the wetting 
transition is no longer sharp. The rounding is described asymptotically by 
the crossover scaling form 

where 

?=CWo/(Wo-1)  with Wo=e w (7.6) 

and 

I wo( wo)l Wo c In Icl + 1 + x + In c + o(c) (7.7) 
tc w o - 1  Wo-1  w o - 1  

with Euler's constant rc=0.5772156649 .... Details on the form of the 
scaling function P and implications of (7.5) can be found in ref. 18. Note, 
in particular, the logarithmic nonscaling shift in t, which is an unusual 
feature. 
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For c > 0 potentials, which repel the interface, thus competing with the 
contact wall interaction, the wetting transition remains sharp. However, it 
becomes first-order, but with divergent correlation lengths. The scaling 
form (7.5) applies with a different scaling function P. However, P - 0  for 
t > t c, and P vanishes linearly as t --* t~7 : one finds 

e o ~ g ( t c - t  ) (7.8) 

for small, fixed c > 0. This is reminiscent of a first-order transition, since the 
derivative C~eofi?t is discontinuous at to. However, for the correlation lengths 
~dl and ~• one finds a continuous divergence with new exponents v u = 1 
and v• = 1/2 (different from vji= 2, v c = 1 for c = 0). 

8. OPEN P R O B L E M S .  C O N C L U D I N G  R E M A R K S  

Solid-on-solid models in two dimensions are a rich source of exact or 
nearly exact information on critical phenomena at wetting transitions. 
Results (=-2~ already cover systems with second-order and first-order tran- 
sitions, as well as rounded transitions (for binding potentials). In this 
section a brief list is given of some open problems, the resolution of which 
would be of particular benefit to the general theory of wetting. 

Development of the mathematical theory of analytic properties of the 
continued fraction (5.3) for small e is highly desirable. Indeed, in its present 
form the continued fraction method is useful for general considerations (see 
Section 5), but no tractable results of practical interest can be obtained. 

For the power-law external potentials [see (3.2), (3.4), (3.5), (7.1)], a 
particularly interesting case is the borderline value ~b = 2 studied recently 
within the QM model. (z9) It is a lsoimportant  to emphasize that the choice 
(7.1) for the potential is dictated by mathematical convenience. For C not 
too small, higher order power-law contributions to the difference 
V(n) - Cn ~ may have a qualitative effect on the wetting transition (~4"35~ (if 
they are not small). 

For the binding potentials (3.3), (3.7), the general scaling behavior at 
the rounded transition is known. ~a~2] Here the most interesting case is that 
of the applied field, ~ = 1. Study of the ~ = 1 potential (3.3) beyond the 
QM-type approximations, i.e., for the difference equation and preferably 
without deexponentiating the potential, may yield interesting new insights. 
It is also interesting to investigate the applied field effect on wetting with 
long-range forces, e.g., on the first-order wetting transition induced by the 
C/r long-range potential (Section7). Interesting numerical studies of 
applied field effects on solid-on-solid model correlation functions have been 
initiated by Stecki and Dudowicz (see ref. 36 and references cited therein). 
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